THE MATHEMATICAL AND COMPUTER MODELING IN BIOPHYSICS AND PHARMACY
Abstract
In the process of lecturing in disciplines such as Biophysics and Pharmacy, dealing with mathematical models, one ought to bear in mind, that quantitative computations of the properties of biological objects needs specific conceptual and mathematical tools. Almost all definitions are presented by means of some mathematical constructions from the field of mathematical and differential analysis. For qualitative understanding of these constructions it is necessary to solve certain biophysical or pharmaceutical problem in practice within student self-directed learning. In the course of Biophysics and Pharmacy the skill acquisition is essential for students. Thus, digestion of theoretical material must be accompanied by accomplishment of large number of various tasks, including computing ones with applying math packages. Accomplishment of such tasks is oriented to
better learn of material, further understanding of main principles and problem-solving techniques of Biophysics and Pharmacy and is notable by maximum visualization, because for any obtained solution one can plot corresponding dependences for biophysical and pharmaceutical characteristics. Also, varying input parameters according to each considered problem situation, one can simulate and trace a dynamics of real biophysical and pharmaceutical processes, and this contributes to a better understanding of their nature. To train skilled professionals in medicine it is necessary not only to give information on possible methods of modeling in Biophysics and Pharmacy, but also give examples of application in medicine and pharmacy.
References
2. Горбань А. Н. Демон Дарвина: Идея оптимальности и естественный отбор / А. Горбань, Р. Хлебопрос. – Москва : Наука, 1988. – 208 с.
3. Рубин А.Б. Биофизика / А.Б. Рубин. – Москва : Высшая школа, 1999. − В 2-х томах. Т. 1. − 156 с.
4. Смолянинов В.В. Математические модели биологических тканей / В.В. Смолянинов – Москва : Наука, 1980. − 359 с.
5. Романовский Ю.М. Математическая биофизика / Ю.М. Романовский, Н.В. Степанова, Д.С. Чернавский – Москва : Наука, 1984. – 287 с.
6. Беллман Р. Математические методы в медицине / Р. Беллман. – Москва : Мир, 1987. – 250 с.
7. Філоненко Н.Ю. Особливості викладання курсу «Комп’ютерне моделювання в фармації» «Актуальні питання природничо-математичної освіти» / Н.Ю. Філоненко. – 2015. − № 5-6. − С. 126–132.
8. Sunil S Jambhekar, Philip J Breen Basic pharmacokinetics / Sunil Jambhekar. – London : Chicago, 2009. – 425 p., 120 с