TRADITIONAL AND INNOVATIVE TECHNOLOGIES IN TEACHERS’ PROFESSIONAL COMPETENCE IN TRAINING THE STUDENTS IN STEM EDUCATION
Abstract
In the Concept of Development of Science and Mathematics Education (STEM Education), the implementation of which is envisaged by the Government of Ukraine by 2027, the need to focus on professional training of teachers is becoming increasingly relevant for higher education institutions. In this context, it is advisable to study the historical retrospection of the development of traditional and innovative educational technologies and the use of educational technologies in the professional activities of teachers in the field of STEM education in the country that is the source of STEM education – the United States of America.Purpose. The purpose of the article, based on historical retrospection, is to investigate the development of traditional and innovative practices of using educational technology in the professional competence of teach- ers in the training of students in the field of STEM education. The following tasks were solved: to investigate which technologies in the professional activities of teachers are traditional and which are innovative in the spa- tial content of the development of education; to determine which technologies are important for students to master for professional activities in the field of STEM education.Methods. To achieve the set goal, specific-search and logical-synthetic analysis; system-structural analysis; chronological analysis; statistical and comparative analysis of individual aspects of the development of STEM education; theoretical-generalizing method and interpretation method were used.Results. The results of the study showed that in the category of traditional technologies, both in the USA and in Ukraine, passive learning technologies prevail, namely explanatory-illustrative, lecture and practical learning in the classroom. In the category of innovative technologies, activity, interactive technologies, as well as technologies of personality-oriented learning prevail. Project technologies are very often attributed by teachers to the group of innovative ones, but today it is obvious that mastering them is mandatory for teachers. In the context of our study, it should be noted that the issue of liberal education, namely «artes liberales» versus «artes serviles» in the development of the educational environment and the concept of education in the United States, led to a rethinking of the direction of education, in particular in determining the development of pedagogical skills of teachers and the training of students, which was manifested in the progress and improvement of pedagogical systems.Conclusions. It is determined that the historical development of education is aimed at moving away from academic traditional learning, which has been an unchanging principle since the founding of the first higher education institutions in the United States, to the latest innovative educational methods, namely, information and communication, digital, problem-dialogical, problem-heuristic, interactive, personality-oriented, based on multiculturalism in education. Technologies of pedagogical skills of teachers in the field of STEM education, regardless of the country, are traditional (academic) and innovative at the same time, because the learning process can be oriented both to the classics and to innovations, which is a progressive model of education that attracts both young people and teachers who use the latest educational trends in their work.
References
2. Васютіна, Т.М. (2024) Освітні медіаресурси та цифрові застосунки як засоби реалізації STEM-технологій у підготовці майбутніх педагогів. Наукові записки. Серія: Педагогічні науки, 7, 18–24. DOI: https://doi.org/10.59694/ped_sciences.2024.07.018
3. Демченко, І., Григоренко, Т., Ревнюк, Н., Іващенко, К. (2023). Вплив освітнього середовища закладів вищої освіти на формування ключових компетентностей та соціальних навичок здобувачів. Наукові інновації та передові технології, 2(16), 271–283. DOI: https://doi.org/10.52058/2786-5274-2023-2(16)-271-283
4. Кабінет Міністрів України. Про затвердження плану заходів щодо реалізації Концепції розвитку природничо-математичної освіти (STEM-освіти) до 2027 року (№ 131-р., 2021, січень 13). https://zakon.rada.gov.ua/laws/show/131-2021-%D1%80#Text
5. Наказ Міністерства освіти і науки України. Про реалізацію інноваційного освітнього проекту «Нова українська школа, університет, громада, влада – координація взаємодії на інтелектуальній платформі TeachHub» за вересень 2021 – квітень 2026. (№ 1041, 2021, вересень 29). https://mon.gov.ua/static-objects/mon/uploads/public/661/692/42a/66169242ab846373875908.pdf
6. Наказ Міністерства освіти і науки України. Про реалізацію інноваційного освітнього проекту всеукраїнського рівня за темою «Науково-методичне забезпечення STEM-освіти в закладах освіти» у вересні 2024 – грудні 2027 року. (№ 1438, 2024, жовтень 9). https://mon.gov.ua/npa/pro-realizatsiiu-innovatsiinoho-osvitnoho-proiektu-na-vseukrainskomu-rivni-za-temoiu-naukovo-metodychne-zabezpechennia-stem-osvity-v-zakladakh-osvity-u-veresni-2024-hrudni-2027-rokiv
7. Пріма, Р. М., Пріма, Д. А. (2024). Потенціал STEM- технологій у професійній підготовці майбутніх педагогів. Перспективи та інновації науки (Серія «Педагогіка», «Психологія», «Медицина»), 5(39), 419–425. DOI: https://doi.org/10.52058/2786-4952-2024-5(39)-419-425
8. Рахманіна, А. С. (2024). Розвиток особистості майбутнього педагога через формування STEM-компетентностей. Гуманітарні студії: педагогіка, психологія, філософія, 15 (1), 43–50. DOI: https://doi.org/10.31548/ hspedagog15(1).2024.43-50
9. Anderson, J., Yeping, Li (Eds.), 2020. Advances in STEM Education. Springer Nature Switzerland AG. 569 p. DOI: https://doi.org/10.1007/978-3-030-52229-2
10. Batyuk, L. (2023). Digital literacy among students in medical institutions of higher education in distance learning situations. Scientific notes of the Department of Pedagogy, 52, 147–154. DOI: https://doi.org/10.26565/2 074-8167-2023-52-17
11. Batyuk, L. (2025). Major aspects of STEM education based on U.S. government initiatives. Educational Challenges, 30(1), 88–105. DOI: https://doi.org/10.34142 /2709-7986.2025.30.1.06
12. Batyuk, L., Zhernovnykova, O. (2018). Strategy for the development of digital competence in the national education system of Ukrainian society. Journal of Education, Health and Sport, 8(11). 912–921. DOI: https://doi. org/10.12775/JEHS.2018.8.11.087
13. Boichenko, M., Boichenko, V. (2019). STEM-ed- ucation in the USA and Ukraine: comparative analysis. Педагогічні науки: теорія, історія, інноваційні технології, 5 (89), 3-13. DOI: https://doi.org/10.24139/2312-5993/2019.05/003-013.
14. Breiner, J. M., Harkness, S. S., Johnson, C. C., Koe- hler, C. M. (2012). What Is STEM? A Discussion about Conceptions of STEM in Education and Partnerships. School Science and Mathematics, 112, 3–11. DOI: https:// doi.org/10.1111/j.1949-8594.2011.00109.x
15. Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities, National Science Teachers Association. 116 p.
16. Drexler, K. (2021). Morrill Act: Primary Documents in American History. https://guides.loc.gov/morrill-act
17. Federation of American Scientist. (2025). Establish- ing White House Initiative For STEM Educational Excel- lence & Workforce Development At The U.S. Department Of Education. https://fas.org/publication/whisew/
18. Geiger, R. L. (2015). The history of American higher education : learning and culture from the founding to world war II. Library of Congress Cataloging-in-Publication Data. Princeton University Press. 585 p.
19. Honey, M., Pearson, G., Schweingruber, H. (Eds.). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press. 2014. 181 p. DOI: https://doi.org/10.17226/18612
20. Kelley, T. R., Knowles, J. G. (2016). A Conceptual Framework for Integrated STEM Education. International Journal of STEM Education, 3(11), 1–11. DOI: https://doi.org/10.1186/s40594-016-0046-z
21. Klemenčič, M. (2020). Alternative Higher Education. By P. N. Teixeira, J. C. Shin, (ed.), The International Encyclopedia of Higher Education Systems and Institutions: Bok (pp. 117–124). Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-017-8905-9_27
22. Kontowski, D. (2014). Liberal education. Tradycyjna? Nowatorska? By Ratajczaka K. Innowacje edukacyjne: wczoraj, dziś, jutro: Book (pp. 23–29). Repozytorium Uniwersytetu im. Adama Mickiewicza (AMUR), Poznań.
23. Lee, Y.-F., Lee, L-S. (2022). Status and Trends of STEM Education in Highly Competitive Countries: Country Reports and International Comparison. Technological and Vocational Education Research Center. 534p.
24. MacDonald, A., Danaia, L., Murphy, S. (Eds.). (2020). STEM Education Across the Learning Continuum. Springer Nature Singapore Pte Ltd. 316p. DOI: https://doi.org/10.1007/978-981-15-2821-7
25. Machi, E. (2009). Improving US competitiveness with K-12 STEM education and training. Heritage special report. SR-57. A report on the STEM education and National Security Conference, October 21–23, 2008. Washington, DC: Heritage Foundation. pp. 1–15. https://files.eric.ed.gov/fulltext/ED505842.pdf
26. Madden, L., Beyers J., O’Brien, S. (2016). The importance of STEM education in the elementary grades: Learning from pre-service and novice teachers’ perspec- tives. Electronic Journal of Science Education, 20(5), 1–18.
27. Margot, K. C., Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6(2), 1–16. DOI: https://doi.org/10.1186/s40594-018-0151-2.
28. Means, B., Wang, H., Young, V., Peters, V., Lynch, S. J. (2016). STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching, 53(5), 709–736. DOI: https://doi.org/10.1002/tea.21313
29. Morrill Act (1862). (2025). The U.S. National Archives and Records Administration. https://www.archives.gov/milestone-documents/morrill-act
30. Neem, J. N. (2013). Developing Freedom: Thomas Jefferson, the State, and Human Capability. Studies in American Political Development. 27 (1), 36–50. DOI: https://doi.org/10.1017/S0898588X13000023
31. Ntemngwa, C., Oliver, S. (2018). The implemen- tation of integrated science technology, engineering and mathematics (STEM) instruction using robotics in the middle school science classroom. International Journal of Education in Mathematics, Science and Technology, 6(1), 12–40. DOI: https://doi.org/10.18404/ijemst.380617
32. Patridge, L.E. (2022). Talks On Teaching by Francis Wayland Parker. Legare Street Press. 184 р.
33. Purdy, W. C., (2003). The History of Higher Education in the Western United States. A thesis submitted in partial fulfillment of the requirements for the degree Master of Arts in Education. 187 p.
34. Raupp, A.B. (2019). STEM education’s lost decade and tenor. Forbes technology council. https://www.forbes.com/sites/forbestechcouncil/2019/07/25/stem-educations-lost-decade-and-tenor/#43f6101260c8
35. Rowland, I. D., Howe, T. N. (Eds.). (2014). Vitruvius: Ten Books on Architecture. Cambridge University Press. 352p. DOI: https://doi.org/10.1017/CBO9780511840951
36. Sikandar, А. (2015). John Dewey and His Philosophy of Education. Journal of Education and Educational Developmen, 2(2), 191 – 201.
37. Williams, M. K. (2017). John Dewey in the 21st Century. Journal of Inquiry & Action in Education, 9(1), 91–102.
38. Yamada, R., Yamada, A., Neubauer, D. E. (Eds). (2023). Transformation of Higher Education in the Age of Society 5.0. International and Development Education. Palgrave Macmillan, Cham. pp. 159–167. DOI: https://doi.org/10.1007/978-3-031-15527-7_12